InversMatriks ordo 2x2; Diketahui matriks E=(1 3 2 5), A=(2 -1 1 0), dan K=(1 1 0 2). Jika ENA = K, maka matriks N adalah. Invers Matriks ordo 2x2 Rekomendasi video solusi lainnya. 03:09. Jika X adlaah matriks orod 2x2 memenuhi persamaan matriks Jika X adlaah matriks orod 2x2 memenuhi persamaan matriks 03:39. Supaya X.(-1 2 5 7 Pertanyaan Garis y = 3 x + 1 direfleksikan terhadap garis y = − x kemudian ditransformasi oleh ( 1 0 2 1 ) . Persamaan bayangannya adalah VvCv. Kelas 11 SMAMatriksDeterminan Matriks ordo 2x2Determinan Matriks ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0127Diketahui M =-1 50 -2 105, maka nilai dari det M^3 sa...Teks videoJika melihat hal seperti ini maka cara pengerjaannya menggunakan konsep invers matriks perhatikan di sini. Jika kita punya bentuk AX = b, maka untuk mencari X yaitu a invers dikali B di sini matriks A nya ini adalah ini dan matriks b nya disini adalah ini berarti kita harus mencari invers dari matriks A Ingatkan juga dia kita punya matriks berukuran 2 * 2 maka invers Nah itu sama dengan 1 per a d mimpi C dikali b b b seperti yang lain tapi di sini kita cari dulu akhir Korsel berarti invers dari ya 2 - 5 - 3 tapi ini sama dengan kita masuk ke rumus 1 per 3 x min 3 dikurang 2 x min 5 dikaliMin 253 = 3 x min 3 min 92 X min 5 Min 10 dikurangi 10 tahun 10 ini 1 per 1 min 3 min 2 5 3 kita tulis berarti di sini X = min 2 kalikan dengan 1234 perkalian matriks seperti ini Pak Acaranya ini di kali ini lalu ditambah ini di kali ini itu kita dapatkan baris pertama pertama untuk mendapatkan baris pertama kolom kedua kita kalikan dengan kolom yang keduauntuk mendapatkan baris ke-2 dan kolom ke-1 ke-2 yang ini dikalikan dengan kolom pertama yang ini kita coba saja berarti ini sama dengan min 3 kali 1 min 3 x 1 + min 2 x 3 baris pertama kalau dua berarti 3 * 2 + 2 * 40 untuk yang baris ke-2 nya 5 * 1 + 3 * 3 baris kedua kolom kedua 5 * 2 + 3 * 4 = hasilnya Min 9 Min 14 14 22 jadi jawabannya itu yang deh sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Kelas 11 SMAMatriksOperasi pada MatriksDiketahui matriks A=3 -1 2 -5 dan A^2-xA=yI, dengan x dan y e bilangan real serta I matriks identitas berordo 2x2. Nilai x+y sama dengan ....Operasi pada MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0154Hasil dari A^2-2A untuk A 2 -1 3 0 adalah ..0313Jika bilangan real a, b, dan c memenuhi persamaan a1 0 1...01132 -1 3 0+-3 1 2 -3= ...0208-3 5 2 0 1 4-3 4 2 0 0 5+1 -5 2 3 -6 0=....Teks videoJika kita mendapatkan soal seperti ini maka cara penyelesaiannya adalah kita harus mengetahui matriks identitas untuk matriks identitas dapat kita tulis sebagai ini memiliki matriks yaitu 1001. Nah ini adalah matriks identitas yang ordonya 2 * 2 lalu kita harus tahu sifat dari matriks A Salah satu sifat dari matriks ketika terdapat konstanta dikalikan dengan sebuah matriks A akan menjadi misalkan kita disini mempunyai konstanta yaitu Kak matriks A adalah a b c d, maka akan sama dengan menjadi matriks k k b k c k d. Selanjutnya kita ingat kembali perkalian dari matriks ketika terdapat matriks A yang ordonya m * nDikalikan dengan matriks B yang ordonya n * s akan memiliki matriks c yang ordonya m * s. Misal disini kita memiliki matriks yang ordonya 2 * 1. Jika ditulis misalkan matriks A adalah a. B ini matriks yang ordonya 2 * 1 lalu dikalikan dengan matriks B yang ordonya satu kali dua yaitu di mana memiliki 1 baris dengan kolom nya hanya ada dua dituliskan seperti ini yaitu c d, maka akan didapatkan matriks barunya adalah untuk mendapatkan baris 1 kolom 1 di sini berarti kita akan mengalihkan baris satu ini dengan kolom satu ini yaitu berarti a dikali C lalu untuk mendapatkan baris 1 kolom 2 di sini kita kalikan yaitu baris 1Dengan kolom 2 berarti a x D lalu untuk mendapatkan baris 2 kolom 1 berarti kita kalikan dengan baris dengan kolom 1 maka dituliskan b * c lalu untuk mendapatkan baris 2 kolom 2 kita dapatkan dari baris 2 yang dikalikan dengan kolom 2 sehingga ditulis b. * d. Maka inilah persamaan baru matriksnya selanjutnya kita lihat pada soal terdapat matriks A yang memiliki matriks 3 - 12 - 5 dengan ordo 2 * 2 laluterdapat sebuah persamaan yaitu a kuadrat dikurang x a = y maksudnya disini adalah matriks A dikuadratkan dikurang dengan matriks A yang dikalikan dengan x = matriks identitas yang dikalikan dengan y dikatakan bahwa X dan Y elemen dari bilangan real dan I adalah matriks identitas yang ordonya 2 * 2, maka yang ditanyakan pada soal adalah nilai x ditambah ySelanjutnya kita akan subtitusikan matriks A dan matriks identitas nya ke dalam persamaan ini persamaannya adalah a. Kuadrat dikurang x = y matriks A adalah 3 - 12 - 5 lalu dikuadratkan dikurang X matriks A nya adalah 3 - 12 - 5 = matriks c nya dikalikan dengan matriks identitas yaitu 1001 tahun untuk menyelesaikan persamaan ini kita Uraikan menjadi3 - 12 - 5 dikalikan 3 - 12 - 5 kurang nah ini kita kembali lagi ke sifat dari Markus ini maka jika ditulis menjadi 3 X min x 2 x min 5 x lalu = ini juga kita akan menggunakan sifat matriks ini maka jika ditulis menjadi y 00 yNah selanjutnya kita akan mengalikan matriks ini dulu setelah itu nanti kita akan kurangi dengan matriks ini dan = dengan matriks ini perlu diingat kembali untuk matriks yang kuadrat Seperti ini cara penyelesaian itu kita Uraikan menjadi Misal a dikali seperti itu sehingga kita memiliki persamaan y menjadi 3 - 12 - 5 dikalikan dengan 3 - 2 - 5 lalu dikurangkan dengan 3 x min x 2 x min 5 x = y 00 y nah lalu kita akan mengalikan matriks ini terlebih dahulu selanjutnya lalu kita akan kurangi untuk menyelesaimatriks seperti ini kita kalikan baris dengan kolom yang untuk mendapatkan baris barunya nah dapat dituliskan seperti ini untuk mendapatkan baris 1 kolom 1 kita kalikan dari 1 dengan kolom 1 jadi penulisannya 3 * 3 adalah 9 plus minus 1 x 2 adalah minus 2 untuk mendapatkan baris 1 kolom 2 kita kalikan baris satu dengan kolom 2 sehingga jika dituliskan 3 x min 1 adalah minus 3 ditambah minus 1 x minus 5 minus ketemu minus menjadi positif 1 * 5 adalah 5 lalu untuk mendapatkan baris 2 kolom 1 kita kalikan baris 2 dengan kolom 1 jika dituliskan 2 * 3 adalah 6 plus minus 5 x 2 adalah minus 10 hal untuk mendapatkan baris 2 kolom 2 kita kalikan baris 2 ini dengan kolom 2 sehingga jika didapatkan adalah 2 x minus 1 adalah minus 2 ditambah minus 5 x minus 5 adalah 25 lalu dikurangi dengan 3 x min x 2 x min 5 = y 00 y dari sini kita akan Sederhanakan terlebih dahulu menjadi ditambah minus 2 adalah 7 - 3 + 5 adalah 26 plus minus 10 adalah minus 4 minus 2 + 25 adalah 23 lalu dikurangi dengan matriks 3 x min x 2 x minus 5 x = y 00 y untuk pengurangan atau penjumlahan matriks cara penyelesaiannya adalah kita hanya melihat baris dan kolom yang sama ini ini akan dikurangi dengan ini jika kita Tuliskan adalah seperti ini 7 dikurang 3x nah ini untuk dari 1 1 hal untuk baris 1 kolom 2 berarti 2 dikurang minus X lalu untuk baris 2 kolom 1 - 4 dikurang 2 x lalu untuk baris 2 kolom 2 adalah 23 dikurang minus 5 x hasil matriks pengurangan nya lalu = y 00 y dari persamaan matriks ini kita punya persamaan-persamaan yang pertama 7 dikurang 3 x = y Lalu ada 2 + x = 0 Lalu ada negatif 4 dikurang 2 x = 0 Lalu ada 23 + 5 x = y yang pertama kita akan mencari nilai x dari persamaan yang maka didapatkan adalah x = minus 2 lalu X ini kita akan subtitusikan kebersamaan ini ataupun ini kita akan mensubstitusikan persamaan yang ini maka didapatkan lah 7 dikurang 3 x minus 2 = y maka y = 7 - 3 - 2 menjadi positif 6 y = 13 yang ditanyakan pada soal adalah x + y maka dapat simpulkan x + y = negatif 2 + 13 = 11, maka jawabannya adalah D sampai jumpa di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Kelas 11 SMAMatriksOperasi Pada MatriksDiketahui matriks A= 1 2 3 5 dan B.=3 -2 1 4 Jika A^t adalah transpose dari matriks A dan AX =B+ A^t, maka determinan matriks X =Operasi Pada MatriksDeterminan Matriks ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0253Diketahui matriks A=[-3 1 5 10 2 -4] dan B=[3 -2 4 2 0 1]...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...Teks videoHalo, fans di sini ada matriks A dan B matriks yang dua-duanya berordo 2 * 2. Jika matriks A dikali matriks X = matriks B ditambah 2 maka determinan dari matriks X adalah untuk mencari determinan matriks X kita harus menghilangkan atau mengeliminasi dulu nih matriks A di depan Excel adalah dengan menggunakan identitas matriks sebagai berikut. Jika ada matriks invers dari zat dikalikan dengan matriks zatnya atau matriks dikalikan dengan matriks zat nya sekalian mau ke situ tidak komutatif ini pengecualian adalah matriks identitas kemudian jika sebuah matriks dikalikan dengan aktif identitas Maka hasilnya adalah matriks itu sendiri maka disini untuk menghilangkan apanya kita kalikan dengan invers dari a di ruas kanan juga sama kita kalikan dengan matriks matriks A invers dikalikan dengan matriks A adalah matriks identitas matriks identitas dikalikan dengan matriks X adalah matriks X setelah itu determinan kita akan mencari determinan Nya maka determinan matriks X adalah determinan dari matriks A dikalikan dengan determinan dari matriks B ditambahkan dengan matriks a + cos B terminan dari sebuah matriks invers adalah 1 ton determinan dari matriks tersebut maka disini determinan dari matriks A invers adalah 1 determinan a. Kemudian rumus determinan matriks dengan ordo dua kali dua kali di sini ada matriks A adalah sebagai berikut a dikali B dikurangi dengan elemen b. * c kemudian rumus dari transpose matriks adalah kita mengubah baris menjadi kolom di sini baris 1 adalah matriks A danpada matriks transposenya kita Ubah menjadi kolom 1 maka matriks A transpose di sini 1325 kita Ubah menjadi 1 2 3 5 kemudian determinan dari matriks B ditambah atas pos adalah matriks B ditambah matriks A transpose ini berarti di sini 3 + 11 + 2 - 2 + 3 dan 4 + 5 kemudian determinannya nih, maka kita kalikan sila ke-3 ditambah 1 adalah 4 dikalikan dengan 4 ditambah 59 dikurang matik 1 + 2 dikurangi dengan negatif 2 + 31 x = 3 hasilnya adalah 9 * 43636 dikurang 3 33 selalu determinan dari matriks A yang kita cari determinan dari matriks A adalah kita gunakan cara1 dikali 5 dikurangi dengan 2 * 3 hasilnya adalah 5 dikurang 6 - 1. Nah setelah kita mendapatkan determinan dari matriks B ditambah a transpor dan determinan dari matriks A maka disini determinan dari matriks X adalah 1 dan a adalah negatif 1 dikali 33 hasilnya negatif 1 dikali 33 adalah negatif 33 sampai jumpa karya soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul